- разностные уравнения
-
разностные уравнения
—
[http://www.iks-media.ru/glossary/index.html?glossid=2400324]
разностные уравнения
Уравнения, содержащие конечные разности искомой функции. (Конечная разность определяется как соотношение, связывающее дискретный набор значений функции y = f(x), соответствующих дискретной последовательности аргументов х1, x2,…, xn). В экономических исследованиях значения величин часто берутся в определенные дискретные моменты времени. Например, о выполнении плана судят по показателям на конец планируемого периода. Поэтому вместо скорости изменения какой-либо величины df/dt приходится брать среднюю скорость за определенный конечный интервал времени ?f/?t. Если выбрать масштаб времени так, что длина рассматриваемого периода равна единице, то скорость изменения величины можно представить как разность y = y(t+1) — y(t), которую часто называют первой разностью. При этом различают правую и левую разности, в частности, y = y(t) — y(t — 1) — левая, а приведенная выше — правая. Можно определить вторую разность: ?(?y) = ?y(t + 1) — ?y(t) = y(t + 2) — 2y(t + 1) + y(t) и разности высших порядков ? n. Теперь можно определить Р.у. как уравнение, связывающее между собой конечные разности в выбранной точке: f [y(t), ? y(t), ..., ?n y(t)] = 0. Р.у. всегда можно рассматривать как соотношение, связывающее значения функции в ряде соседних точек y(t), y(t+1), …, y(t+n). При этом разность между последним и первым моментами времени называется порядком уравнения. При численном решении дифференциальных уравнений их часто заменяют разностными. Это возможно, если решение Р.у. стремится к решению соответствующего дифференциального уравнения, когда интервал Dt стремится к нулю. При исследовании функций многих переменных, по аналогии с частными производными (см. Производная), вводятся также частные разности.
[http://slovar-lopatnikov.ru/]Тематики
- экономика
- электросвязь, основные понятия
EN
- difference equations
Справочник технического переводчика. – Интент. 2009-2013.
Разностные уравнения — [difference equations] уравнения, содержащие конечные разности искомой функции. (Конечная разность определяется как соотношение, связывающее дискретный набор значений функции y = f(x), соответствующих дискретной последовательности аргументов х1 … Экономико-математический словарь
Конечно-разностные уравнения — [difference equations] см. Разностные уравнения … Экономико-математический словарь
Дифференциально-разностные уравнения — уравнения, связывающие аргумент, искомую функцию, её производные и приращения (разности). Например, у = kΔy, где у = у (х), Δy = y (x + h) y (x). Подстановка последнего выражения в исходное уравнение показывает, что Д. р. у. это частный… … Большая советская энциклопедия
Уравнения Максвелла — Классическая электродинамика … Википедия
Дифференциальные уравнения с отклоняющимся аргументом — уравнения, связывающие аргумент, а также искомую функцию и её производные, взятые, вообще говоря, при различных значениях этого аргумента (в отличие от обычных дифференциальных уравнений (См. Дифференциальные уравнения)). Примерами могут… … Большая советская энциклопедия
Уравнения движения — Уравнение движения (уравнения движения) уравнение или система уравнений, задающие закон эволюции механической или сходной динамической системы (например, поля) во времени[1]. Эволюция физической системы однозначно определяется уравнениями… … Википедия
НАВЬЕ - СТОКСА УРАВНЕНИЯ — основные уравнения движения вязкой жидкости, представляющие математическое выражение законов сохранения импульса и массы. Для неустановившегося течения сжимаемой жидкости Н. С. у. в декартовой системе координат могут быть, записаны в виде где… … Математическая энциклопедия
ПЕРЕНОСА УРАВНЕНИЯ — численные методы решения методы решения интегро дифференциальных уравнений, описывающих перенос частиц или излучения. Для стационарных задач уравнения имеют вид (1) где , единичный вектор, поток частиц в точке х, летящих со скоростью… … Математическая энциклопедия
КВАЗИЛИНЕЙНЫЕ ГИПЕРБОЛИЧЕСКИЕ УРАВНЕНИЯ И СИСТЕМЫ — уравнения и системы дифференциальных уравнений вида: где оператор Lхарактерен тем, что в каждой точке существует проходящий через нее вектор z такой, что для произвольного непараллельного к z, вектора hхарактеристическое уравнение относительно… … Математическая энциклопедия
АППРОКСИМАЦИЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ РАЗНОСТНЫМ — приближение дифференциального уравнения системой алгебраич. уравнений относительно значений искомых функций на нек рой сетке, к рое уточняется при стремлении параметра (шага сетки) к нулю. Пусть нек рый дифференциальный оператор, а нек рый… … Математическая энциклопедия